基于人口的成群质算法在全球优化中得到了重大关注。人类心理搜索(HMS)是一个相对近期的基于人口的成分型,与其他算法相比,已被证明可以很好地运行。然而,HMS是耗时的,遭受了相对较差的探索。聚集候选解决方案,HMS选择具有最佳平均目标函数的获胜者群集。这不一定是选择获胜者组的最佳标准,并限制算法的勘探能力。在本文中,我们提出改进了对HMS算法的改进,其中来自多个集群的最佳出价用于受益于增强的探索。我们还在聚类阶段使用一步K-Means算法来提高算法的速度。我们的实验结果表明,MCS-HMS优于HMS以及其他基于人群的常规算法
translated by 谷歌翻译
人类精神搜索(HMS)算法是一种相对近期的基于人口的成群质算法,其在解决复杂优化问题方面已经表明了竞争性能。它基于三个主要运营商:心理搜索,分组和运动。在原始的HMS算法中,群集算法用于对当前群体进行分组,以便在搜索空间中识别有希望的区域,而候选解决方案则朝向有前途区域中的最佳候选解决方案。在本文中,我们提出了一种新颖的HMS算法,HMS-OS,其基于目标和搜索空间中的聚类,其中客观空间中的聚类找到了一组最佳候选解决方案,然后也用于更新人群。为了进一步改进,HMSOS从精神搜索操作员中的心理过程数量的自适应选择中获益。 CEC-2017基准函数的实验结果具有50和100的尺寸,与其他优化算法相比,HMS-OS产生了出色的性能,优于其他方法。
translated by 谷歌翻译
足球溃疡是糖尿病的常见并发症,与大量发病率和死亡率有关,仍然是低腿截肢的主要危险因素。从脚伤中提取准确的形态特征对于适当的治疗至关重要。尽管医学专家的视觉检查是诊断的常见方法,但这是主观且容易出错的方法,因此,计算机辅助方法提供了一种有趣的选择。基于深度学习的方法,尤其是卷积神经网络(CNN),在包括医学图像分割(医学图像分割)的各种任务方面表现出了出色的性能。在本文中,我们提出了一种基于两个基于编码器的CNN模型,即Linknet和U-NET,以执行足球溃疡分割。为了处理有限数量的可用培训样品,我们使用预训练的权重(linkNet模型的有效网络B1和U-NET模型的有效网络B2),并使用MEDETEC数据集进行进一步的预训练,同时还应用了许多形态 - 基于颜色的增强技术。为了提高分割性能,我们结合了五倍的交叉验证,测试时间扩展和结果融合。我们的方法适用于公开可用的慢性伤口数据集和Miccai 2021足球溃疡分段(Fuseg)挑战,我们的方法分别以92.07%和88.80%的基于数据的骰子得分实现最先进的性能,并且是最高的,并且是最高的,并且是最高的。 Fuseg挑战排行榜中排名的方法。 https://github.com/masih4/foot_ulcer_segmentation公开获得对接指南,推理代码和保存训练的模型。
translated by 谷歌翻译
Wearable sensors for measuring head kinematics can be noisy due to imperfect interfaces with the body. Mouthguards are used to measure head kinematics during impacts in traumatic brain injury (TBI) studies, but deviations from reference kinematics can still occur due to potential looseness. In this study, deep learning is used to compensate for the imperfect interface and improve measurement accuracy. A set of one-dimensional convolutional neural network (1D-CNN) models was developed to denoise mouthguard kinematics measurements along three spatial axes of linear acceleration and angular velocity. The denoised kinematics had significantly reduced errors compared to reference kinematics, and reduced errors in brain injury criteria and tissue strain and strain rate calculated via finite element modeling. The 1D-CNN models were also tested on an on-field dataset of college football impacts and a post-mortem human subject dataset, with similar denoising effects observed. The models can be used to improve detection of head impacts and TBI risk evaluation, and potentially extended to other sensors measuring kinematics.
translated by 谷歌翻译
Artificial intelligence (AI) has enormous potential to improve Air Force pilot training by providing actionable feedback to pilot trainees on the quality of their maneuvers and enabling instructor-less flying familiarization for early-stage trainees in low-cost simulators. Historically, AI challenges consisting of data, problem descriptions, and example code have been critical to fueling AI breakthroughs. The Department of the Air Force-Massachusetts Institute of Technology AI Accelerator (DAF-MIT AI Accelerator) developed such an AI challenge using real-world Air Force flight simulator data. The Maneuver ID challenge assembled thousands of virtual reality simulator flight recordings collected by actual Air Force student pilots at Pilot Training Next (PTN). This dataset has been publicly released at Maneuver-ID.mit.edu and represents the first of its kind public release of USAF flight training data. Using this dataset, we have applied a variety of AI methods to separate "good" vs "bad" simulator data and categorize and characterize maneuvers. These data, algorithms, and software are being released as baselines of model performance for others to build upon to enable the AI ecosystem for flight simulator training.
translated by 谷歌翻译
心室心动过速(VT)可能是全世界425万人心脏死亡的原因之一。治疗方法是导管消融,以使异常触发区域失活。为了促进和加快消融过程中的定位,我们提出了基于卷积神经网络(CNN)的两种新型定位技术。与现有方法相反,例如使用ECG成像,我们的方法被设计为独立于患者特异性的几何形状,直接适用于表面ECG信号,同时还提供了二元透射位置。一种方法输出排名的替代解决方案。可以在通用或患者的几何形状上可视化结果。对CNN进行了仅包含模拟数据的数据集培训,并在模拟和临床测试数据上进行了评估。在模拟数据上,中值测试误差低于3mm。临床数据上的中位定位误差低至32mm。在所有临床病例中,多达82%的透壁位置被正确检测到。使用排名的替代溶液,在临床数据上,前3个中值误差下降到20mm。这些结果证明了原理证明使用CNN来定位激活源,而无需固有的患者特定的几何信息。此外,提供多种解决方案可以帮助医生在多个可能的位置中找到实际激活源。通过进一步的优化,这些方法具有加快临床干预措施的高潜力。因此,他们可以降低程序风险并改善VT患者的结局。
translated by 谷歌翻译
心脏磁共振(CMR)序列随着时间的推移可视化心脏功能的体素。同时,基于深度学习的可变形图像注册能够估计离散的向量字段,这些矢量字段将CMR序列的一个时间步骤扭曲为以下方式,以一种自我监督的方式。但是,尽管这些3D+T向量领域中包含的信息来源丰富,但标准化的解释具有挑战性,到目前为止,临床应用仍然有限。在这项工作中,我们展示了如何有效使用可变形的矢量场来描述心脏周期的基本动态过程,形式是派生的1D运动描述符。此外,基于收缩或放松心室的预期心血管生理特性,我们定义了一组规则,可以鉴定五个心血管阶段,包括末端 - 末端(ES)和末端diastole(ED),而无需使用标签的使用情况。我们评估了运动描述符在两个具有挑战性的多疾病, - 中心, - 扫描式短轴CMR数据集上的合理性。首先,通过报告定量措施,例如提取相的周期性框架差异。其次,通过定性地比较一般模式,当我们时间重新样本和对齐两个数据集的所有实例的运动描述符时。我们方法的ED,ES密钥阶段的平均周期框架差为0.80 \ pm {0.85} $,$ 0.69 \ pm {0.79} $,比观察者间的可变性略好($ 1.07 \ pm {0.86} $, $ 0.91 \ pm {1.6} $)和监督基线方法($ 1.18 \ pm {1.91} $,$ 1.21 \ pm {1.78} $)。代码和标签将在我们的GitHub存储库中提供。 https://github.com/cardio-ai/cmr-phase-detection
translated by 谷歌翻译
显示用于误差校正的小型神经网络(NNS)可改善经典通道代码并解决通道模型更改。我们通过多次使用相同的NN使用相同的NN扩展了任何此类结构的代码维度,这些NN与外部经典代码串行串联。我们设计具有相同网络参数的NN,其中每个REED - Solomon CodeWord符号都是对其他NN的输入。与小型神经代码相比,增加了加斯噪声通道的块误差概率的显着改善,以及通道模型变化的稳健性。
translated by 谷歌翻译
机器人应用不断努力朝着更高的自主权努力。为了实现这一目标,高度健壮和准确的状态估计是必不可少的。事实证明,结合视觉和惯性传感器方式可以在短期应用中产生准确和局部一致的结果。不幸的是,视觉惯性状态估计器遭受长期轨迹漂移的积累。为了消除这种漂移,可以将全球测量值融合到状态估计管道中。全球测量的最著名和广泛可用的来源是全球定位系统(GPS)。在本文中,我们提出了一种新颖的方法,该方法完全结合了立体视觉惯性同时定位和映射(SLAM),包括视觉循环封闭,并在基于紧密耦合且基于优化的框架中融合了全球传感器模式。结合了测量不确定性,我们提供了一个可靠的标准来解决全球参考框架初始化问题。此外,我们提出了一个类似环路的优化方案,以补偿接收GPS信号中断电中累积的漂移。在数据集和现实世界中的实验验证表明,与现有的最新方法相比,与现有的最新方法相比,我们对GPS辍学方法的鲁棒性以及其能够估算高度准确且全球一致的轨迹的能力。
translated by 谷歌翻译
机器人系统的长期自主权隐含地需要可靠的平台,这些平台能够自然处理硬件和软件故障,行为问题或缺乏知识。基于模型的可靠平台还需要在系统开发过程中应用严格的方法,包括使用正确的构造技术来实现机器人行为。随着机器人的自治水平的提高,提供系统可靠性的提供成本也会增加。我们认为,自主机器人的可靠性可靠性可以从几种认知功能,知识处理,推理和元评估的正式模型中受益。在这里,我们为自动机器人代理的认知体系结构的生成模型提出了案例,该模型订阅了基于模型的工程和可靠性,自主计算和知识支持机器人技术的原则。
translated by 谷歌翻译